A multiple model approach to respiratory motion prediction for real-time IGRT.

نویسندگان

  • Devi Putra
  • Olivier C L Haas
  • John A Mills
  • Keith J Burnham
چکیده

Respiration induces significant movement of tumours in the vicinity of thoracic and abdominal structures. Real-time image-guided radiotherapy (IGRT) aims to adapt radiation delivery to tumour motion during irradiation. One of the main problems for achieving this objective is the presence of time lag between the acquisition of tumour position and the radiation delivery. Such time lag causes significant beam positioning errors and affects the dose coverage. A method to solve this problem is to employ an algorithm that is able to predict future tumour positions from available tumour position measurements. This paper presents a multiple model approach to respiratory-induced tumour motion prediction using the interacting multiple model (IMM) filter. A combination of two models, constant velocity (CV) and constant acceleration (CA), is used to capture respiratory-induced tumour motion. A Kalman filter is designed for each of the local models and the IMM filter is applied to combine the predictions of these Kalman filters for obtaining the predicted tumour position. The IMM filter, likewise the Kalman filter, is a recursive algorithm that is suitable for real-time applications. In addition, this paper proposes a confidence interval (CI) criterion to evaluate the performance of tumour motion prediction algorithms for IGRT. The proposed CI criterion provides a relevant measure for the prediction performance in terms of clinical applications and can be used to specify the margin to accommodate prediction errors. The prediction performance of the IMM filter has been evaluated using 110 traces of 4-minute free-breathing motion collected from 24 lung-cancer patients. The simulation study was carried out for prediction time 0.1-0.6 s with sampling rates 3, 5 and 10 Hz. It was found that the prediction of the IMM filter was consistently better than the prediction of the Kalman filter with the CV or CA model. There was no significant difference of prediction errors for the sampling rates 5 and 10 Hz. For these sampling rates, the errors of the IMM filter for 0.4 s prediction time were less than 2.1 mm in terms of the 95% CI criterion or 1.1 mm in terms of the standard deviation (SD) or root mean squared errors (RMSE) criterion. For the prediction time of 0.6 s the errors were less than 3.6 mm in terms of the 95% CI criterion or 1.8 mm in terms of the SD/RMSE criterion. The prediction error analysis showed that the average percentage of the target lies outside the 95% CI margin was 5.2% and outside the SD/RMSE margin was 24.3%. This indicates the effectiveness of the 95% CI criterion as a margining strategy to accommodate prediction errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A study on the accuracy of motion tracking of thoracic tumors at radiotherapy with external surrogates

Introduction: In radiotherapy with external surrogates, exact information of tumor position is one of the key factors that improves treatment delivery. Many dynamic tumors in thorax region of patient move mainly due to respiration and are known as intra-fractional motion error that must be compensated, as well. One of clinical strategy is using Stereotactic Body Radiation Thera...

متن کامل

A fast model for prediction of respiratory lung motion for image-guided radiotherapy: A feasibility study

Background: The aim of this work was to study the feasibility of constructing a fast thorax model suitable for simulating lung motion due to respiration using only one CT dataset. Materials and Methods: For each of six patients with different thorax sizes, two sets of CT images were obtained in single-breath-hold inhale and exhale stages in the supine position. The CT images were then ...

متن کامل

Markovian Delay Prediction-Based Control of Networked Systems

A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...

متن کامل

Shape-correlated Deformation Statistics for Respiratory Motion Prediction in 4D Lung.

4D image-guided radiation therapy (IGRT) for free-breathing lungs is challenging due to the complicated respiratory dynamics. Effective modeling of respiratory motion is crucial to account for the motion affects on the dose to tumors. We propose a shape-correlated statistical model on dense image deformations for patient-specic respiratory motion estimation in 4D lung IGRT. Using the shape defo...

متن کامل

Predicting respiratory motion for four-dimensional radiotherapy.

Adapting radiation delivery to respiratory motion is made possible through corrective action based on real-time feedback of target position during respiration. The advantage of this approach lies with its ability to allow tighter margins around the target while simultaneously following its motion. A significant hurdle to the successful implementation of real-time target-tracking-based radiation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 53 6  شماره 

صفحات  -

تاریخ انتشار 2008